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INTRODUCTION

.Problems in the theory of laminar- incompressible and compressible three-
dimensional boundary layers attract much interest. Comprehensive reviews of the
subject appear in literature referenceéfz’%he main objectives of the theory are
to calculate the skin friction distribution, and to predict the location of the
boundary layer separation surface on three-dimensional bodies, as well as to
&étermine heat transfer effects during, say, the re-entry of space vehicles.

The three-dimensional boundary layer equations, either for 'small"” or. "large"
crogs flows, are not easily amenable to mathematical analysis owing to the complexity
of the set of partial differential equations governing the phenomena. Exact
solutions, in general, are not found, and resort must be made to numerical procedures,
or to approximate methods. With regards to the nature of solutions, the problem
may be reformulated as follows: by exact solutions it is meant similar solutions
and it is known that numerous and severe restrictions are imposed as flow conditions
for similar solutions to exist. Considering the diverse applications of compressible
and incompressible laminar boundary layer theory, it is seldom that all of the
similarity conditions are met. Hence, the question: What approach should be used
to predict the behaviour of the nonsimilar laminar boundary layer? 1In a recent
review, Dewey and Gross 4 consider this question but with emphasis on two-dimensional
flows. Their findings could also be applied to three~dimensional flows. In essence,
it was shown that there are four basic types of approach: approximate techniques
such as integral and series solutions containing free parameters; strictly numerical
approach; locally similar methods; and, lastly, expansions about similar solutions.

Two of the above approaches are discussed in the present report extended to
three-dimensional flows: expansions about similar solutions and an approximate

integral technique.



Statement of the Problem -

We consider a body‘(prevailinglyfccnvex)‘of'finite‘dimensions,ﬁplaced~in a
uniform air stream. Furthermore, we assume that the inviscid flow around the
body is known and allows an extrapolation towards y = O (surface of the body).
These extrapolated values at the wall are considered . as the outer boundary values
of the boundary layer which we suppose laminar ' over the whole surface.

The Navier—Stokesl equations, written in a system of curvilinear coordinates

and based on the following three families of surfaces:

y = constant; surfaces parallel to that of the body (y = 0);

z = constant; normal surfaces along the streamlines of the inviscid flow
at the wall of the body;
8 = constant; normal surfaces along the orthogonal trajectories of the

streamlines of the inviscid flow at the wall;

assume after the introduction of Prandtl's boundary layer hypothesis, the form:
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Here (u, v, w) are the components of the velocity vector V inside the boundary layer
in the directions of (s, vy, 2); el(s, z) and ez(s, z) are the metric elements along
the inviscid flow streamlines and their orthogonal trajectories (e3, along the outer

normal of the body, being unity by definition). K1 and k, are Gausé curvature terms,



given by
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is the total energy 6f the flow. o is the Prandtl number. The boundary conditions
are:

at the wall

Y=0 i U=V=W=0, H=Hw (8a)

and at the outer edge of the boundary layer

Y=ol U—~Ue(s3);, W=0, H>He (8b)

- We assume now, as a first approximation, that w<<u, -gg- and 2 are derivatives
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parallel to the wall, and therefore, may be considered as operators which conserve the:

order of a term. The system becomes, after application of Euler's equations to 2F
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where Eqs. 9, 10, and 12 do not contain w, and depend on z only as a simple parameter.
Furthermore, if we agree that all derivatives and all integrations are executed for

z = constant, we may write

-é-.- %agof where dx = elds :

5
is the length element of an inviscid flow streamline. (A formal perturbation procedure

has been recently employed to derive Eqs. 9-12, also).



Analysis

Applying the Levy-Lees transformation
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to Eqs. (10-12), we obtain
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The boundary conditions are:

1-e iS=fre  smon w=o

tm=i S 9 w0

(13)

(14)

(15)

(16)

(17)

(18)

(19a)

(19b)

Equations (15)-(17) subject to boundary conditions (19a) and (19b) are the eguations

on which we shall focus our attention.



Asymptotic Expansion of the Boundary Layer Equations

' 0f the four basic types of approach to the solution of the nonsimilar
laminar boundary layer equations, it seems that expansions about "similar solutions
has received little, if gny, attention for three-dimensional flows. The motivation
for such an investigation arose out of the results reported in Refs. (5) and (6).
In the former exact numerical calculations of the complete nonsimilar, small-cross
flow, boundary layer equations were compared with locally similar solutions. While
the results obtained from the two different methods for the main flow were in
excellent agreement, the cross flow results, while not drastically different, did
reveal that further analytical work is necessary.

In the latter reference only the method of utilizing locally similar solutions
was used, As pointed out in this work, the application of locally similar methods to
the secondary flow has no quantitative confirmation. With this in mind it was felt that
some light could be shed on locally similar methods by the expansion methods. In
addition, the use of integral or improved integral methods could be placed on
surer footing if there are more reliable results to compare the integral results with.

The basis of the expansion method may be traced to the work of Meksynz The
underlying premise is as follows: if the boundary layer is at all times very nearly
described by a similar solution, then the direct effects of the nonsimilar terms may
be calculated by asymptotically expanding the full boundary layer equations in terms
of small parameters which measure the departure of the solutions from similarity. In
this way, the accuracy of locally similar methods is explicitly determined by using
the full nonsimilar equations.

To demonstrate the method for three-dimensional flows, we consider the
incompressible momentum equations (obtained from Eqs. 15 and 16 by setting

—%—-l and €C=1 )
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subject to the boundary conditions

CS (.0 = &,(f‘o) =0 , W(bo)=o0 (22a)

{Y'((?‘“) =1 >, W(kee)=0 : (22b)

It is to be noted that Eq. 20 is the transformed two-dimensional boundary layer
equation. Merk&was the first to expand this complete nonsimilar equation. The key
to the appropriate expansion was the inversion of independent variables; i.e., the
change of variables from‘% ,ﬂL to @, qq/. Adopting this change of variables for

the crossflow equation, Eq. 21, we find that Egs. 20 and 21 transform to
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For small ¢ we perform an asymptotic expansion of f and W of the form

where
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Substituting Eqs. 26 and 27 into Eqs. 23 and 24, as well as 25a and 25b, yiélds, on

equating like powers of € , the following sets of equations
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Equations 28 and 29 represent the similar solutions of Falkner and Skan while
Equations 32 and 33 represent the first correction f, to the main flow velocity profile
which arises from nonsimilar termé. Equations 30 and 31 are the corresponding similar
solutions for the corss flow and Equations 34 and 35 represent the first correction W),
to the secondary flow velocity profile because of nonsimilar terms. It is assumed
that € is not too large so that the series solution in powers of € will converge
satisfactorily.

Before proceeding with a discussion on the integration of the equations, a few
comments on the question of similarity and local similarity of the cvoss flow question
are pertinent. In the work of Geisgit was pointed out that for similar solutions if
two velocity components that are different from zero and parallel to the wall are present
in the external flow, the pertaining velocity Uor W of the external flow must necessarily-
be chosen as the scale factor for u and w, If, an the other hand, no W-component
is present in the external flow which corresponds to the use of streamline coordinates,
an arbitrary function of the dimension of a velocity as scale factor may be chosen for
Ww. While this discussion has been with respect to similar solutions, it is nevertheless
valid for locally similar soultions as well., In the two previously cited references
(5 and 6), where streamline coordinates were used, the question of arbitrariness in
the scale factor is what lead to different small cress flow, locally similar equations.
Two different scale factors were introduced. The present work is concerned with the
dimensionless cross flow velocity component, wiv, and, hence, the reason why the leading
terms, in €°, check with the incompressible equations of Reference [ 5 ] and not
with those in Reference [ 6 ].

Returning to the problem of integrating Equations 28-35, one finds that methods
have been discussed [4,10] to integrate the equations for £, and fl (as well as

subsequent higher order terms). The problem before us is to find W), and W),.
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As in the case of computing fl’ the primary difficulty arises in computing the
inhomogeneous term %1( Q )TL) which contains derivatives of \)), with respect to both
Tl/and % This is a difficult term to calculate numerically because a number of
similarity solutions in the neighborhood of % must be known with high precision. The
problem is not insurmountable in.light of the numerical methods ‘discussed in [ 10] for
the calculation of fl' Some simplification of the equations may be achieved By

*
eliminating the parameter %‘ by defining new dependent variables

*____ Wo » VI
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At present work is being carried on in the investigation of Equations 30, 31, 34 and 35.

Moment Integral Conditions

Returning to the compressible forms of the equations, Equations 15 .~19b, a
discussion of the moment equations will follow. The basic formulation of.the method
has been presented in Reference [ 11 ] for two-dimensional flows and, in which,
| Equations 15 and 16 have been discussed in detail., What we shall be primarily
interested in is Equation 17.

Introducing a finite "edge', rL= 'YLe at which W=0 we obtain a series of integral
conditions by multiplying Equation 17 by YC'AWL (m=0,1, 2,...,) and by integrating
termwise from O 1:0'{(:a . It is assumed that the streamwise and cross flow boundary
layers are described by the same thickness, a usual assumption for the three-

dimensional case. The first term on the left hand side of Equa_!;_ign 17 becomes
5’@ "(cWy), J m__[ W]
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For m21 the influence of the transport properties throughout the boundary layer is
present. As in the case of the streamwise momentum equation, it is convenient to
introduce a mean value of €, for m»l, denoted a,m and varying with ’% and to consider
the remainder to be a function of ? and q/ » known from a previous step’dnl'the

integrétion of the ordinary differential equations. Let
C (B ={C(%V) -~ ComP)] + Com$) (37)

and for m>» 1, Equation 36b becomes
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Equation 38 . assumes the form
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The remaining terms can be integrated by parts and the results are:
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Analogous to the case of the streamwise momentum equation, Equations 36 =~ 44b provide
as many integral conditions for the cross flow velocity profile as is wanted by letting
m=0,1, 2, ...

Summarizing, the integral conditions corresponding to m = 0,1 in Equations 36 =~ 44b

take on the following forms:
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The iptegral moment conditions for f and g may be found.in Reference [ 11].

In order to integrate the above equations appropriate profiles for fQ,’ g
and W are needed. Since polynomials were utilized for qu and g, it is convenient
to express \p in terms of a polynomial. Of course, in doing so,one must recognize that
appropriate parameters must be in the polynomial to account for change of sign in the
cross flaow profile. This is an important part of the study to be able to take
account of and predict the change in sign of the secondary flow.

To gain a better understanding of the behaviour of the cross flow equations with
regards to the moment method, the incompressible equations are being investigated.

At present the example chosen is a problem with flow reversal.
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